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Abstract. We outline a new global minimization method in which the Gibbs distribution of the 
objective function is deterministically annealed by tracing the evolution of a multiple-Gaussian-packet 
approximation. Solutions are reached by iterative approximations with decreasing coarse-graining of 
both objective-function and spatial scales. Results from application of a partial implementation to the 
atomic-microcluster conformation problem are presented. 
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1. Introduction 

1.1. GLOBAL MINIMIZATION AND THE PROTEIN-FOLDING PROBLEM 

The critical need for methods for theoretical prediction of protein 3-dimensional 
conformations from amino acid sequences, the "protein folding problem", is well 
appreciated [18, 27]. While amino acid sequences can be created and modified at 
will, methods to predict the conformational changes that will be induced are 
lacking. Most predictive methods are based on: (1) amino acid pattern matching 
using the database of experimentally determined protein structures [2]; or (2) 
global energy-minimization based on the hypothesis that native protein conforma- 
tions correspond to global minima of free-energy functions [28]. These methods 
are complementary since pattern-matching approaches provide approximate start- 
ing points for energy minimizations. 

The most immediate obstacle to global energy-minimization approaches is the 
extraordinarily large number of local minima of typical conformational energy 
functions. This results from the high dimensionality of the conformation spaces 
which are parametrized by the spatial coordinates of 103-104 atoms [4]. While 
additional obstacles may exist (e.g., current conformational energy functions may 
not be sufficiently accurate), they can be more effectively addressed once the 
global minimization problem has been solved. Present methods are practically 
limited to problems containing relatively few degrees of freedom [e.g. N ~  
0 (102)]; methods specially designed for problems with many degrees of freedom 
are needed. 
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1.2. ANNEALING AND SPATIAL SCALE 

Many proteins rapidly and spontaneously thermally migrate to their lowest energy 
state as temperature is lowered. In effect, they are analog computers that can 
solve the global minimization problem. This important clue motivates the de- 
velopment of computational methods that can efficiently emulate this process. 

We begin such a development by considering pT.(R), the probability distribution 
at temperature T of a protein or other physical system with objective (energy) 
function H(R) defined over a continuous domain of conformations parametrized 
by R. This is the Gibbs distribution 

pr(R) = e - H ( R ) / k B  T 

(k B -= Boltzmann's constant). (1.1) 

It converges at sufficiently low temperature T~o, to the simple form 1 

~r,o (R) ~ e -I(R-R~)/A'°I2 (1.2) 

which is concentrated near the global minimum Rg. The simulated annealing 
algorithm [19], when applied to continuous systems [3, 5, 31], can be viewed as a 
method for stochastically tracing this convergence by Monte Carlo simulation. As 
the number of objective function evaluations becomes large, it explores con- 
formational space with probability density given by (1.1). A(T), the size of the 
random jumps that are used in the stochastic search at temperature T, is a 
decreasing function of T in most implementations. That is, large areas of 
conformation space are explored at high T and progressively smaller regions at 
lower T. A central, though often unstated, assumption of simulated annealing is 
that the global minimum can be identified by a progressively narrowing search 
where the region explored at temperature T2 (T2 < T1) is within the dominant, 
most probable, region identified at T1. This assumption, which is required for 
rapid convergence to the global minimum, is justified by the expectation that the 
conformation of a physical system will thermally fluctuate through a large region 
of conformation space at high temperatures and through progressively smaller 
regions as temperature is lowered. 

This behavior is demonstrated in Figure 1 which displays pr(R) for a hypotheti- 
cal 2-dimensional objective function at different temperatures. At high tempera- 
ture, pr(R) can be roughly modeled by a large Gaussian packet (Fig. 1A). The 
packet radius decreases with decreasing temperature (Fig. 1B) until a point is 
reached (Fig. 1C) where it branches into multiple packets. At yet lower tempera- 
tures [when (1.2) is valid], pr(R)  is dominated by a single packet centered at Rg 
(Fig. 1E). Simulated annealing in effect traces the approximate locations of the 
packets as they converge towards R~ by tracing the path of a sampling point 
through multiple stochastic runs. But its application to continuous problems of 
high dimensionality is limited by its requirement for large numbers of objective 
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function evaluations. Our goal is to construct a deterministic annealing algorithm 
that converges to Rg with fewer objective function evaluations. 

1.3. RENORMALIZATION GROUP APPROACH TO GLOBAL MINIMIZATION 

We have begun the application of renormalization group (RG) ideas, which have 
been exceptionally effective in other areas of statistical physics [33], to this 
problem. Global minimization is significantly different from the continuum and 
lattice physics problems where RG methods have previously been applied, so our 
mathematical formulation is unique. For example, analysis is in coordinate rather 
than momentum space, cutoffs go from high-to-low rather than from low-to-high 
momentum, and fixed points are not relevant. However, many of the basic 
concepts and principles are the same. 

RG analysis focuses on the relationship between descriptions of a physical 
system at different size scales A(T). In this context, PT(R) can be viewed as a 
(positive definite) field of independent variables over the N-dimensional space 
parametrized by R. It describes the system at infinite spatial resolution (corre- 
sponding to A = 0). But, at every T, its predominant variations occur at finite 
spatial scales. The A = 0 description is inappropriate and contributes unnecessary 
computational complexity. Instead, we represent the behavior of the predominant 
components using a smaller number of independent "effective" variables, p~, 
R ° , and A s , which parametrize partially-averaged field fluctuations or "packets" 
which extend over finite regions of conformation space. These variables define 
/~r(R), an approximation to pr(R) as a finite sum of Gaussian packets: 

/~r(R) = ~ p~(T)C[A~(T)]e -[[R-R°(T)I/A~(T)Iz (1.3) 
(~)T 

where C is a normalization constant defined by 

C(A) f e -IR/AI2 dR = 1. 

(For simplicity we assume that there are no constraints and that multidimensional 
integrations are over the entire domain.) Each packet is assigned a unique index 
a. The sum spans the complete set of indices (a} r for the packets that represent 
the dominant structure of pT(R). As illustrated in Figure 1, this set grows and 
diminishes as T decreases. Each packet a is described by three parameters: R ° 
(packet center), A~ (packet width), and p ,  (packet occupation probability). For 
simplicity, we begin the discussion by considering only isotropic packets even 
though this overestimates the spread of ST(R). 

This decomposition of pT(R) dissects its fluctuations into low spatial-frequency 
components described by the packet variables and high frequency components 
which kinetically equilibrate rapidly within each packet. We will see that packet 
motions are governed by an "effective potential" HA, r which is derived from the 
original energy function H by integrating out the contributions from spatial 
fluctuations of size scale A. By this means the time-averaged effects of the 
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high-frequency fluctuations on the low-frequency motions can be calculated. The 
resultant separation of spatial-frequency components in position space is equiva- 
lent to the more customary RG separation in momentum space. 

As in simulated annealing, the procedure begins at temperature Thi, where 
k B Thi is large relative to the objective function scale. It is initialized by construct- 
ing a single-packet approximation to pThi(R) that spans the dominant region of R 
(e.g., of size corresponding to the arrowhead bar in Fig. 1A). Packet size and 
position are initially determined by iterative solution of a set of self-consistent 
constraints. The same constraints are used to adjust packet size and position as 
the temperature is lowered in small steps. The A~ will generally decrease and 
packets will often subdivide (branch) as T is reduced (cf Figs. 1B and 1C). The 

- 0 development o fp r (R)wi l l  be traced by calculating p~ (T), R~ (T), and A s (T), for 
all the packets until/3r(R ) reduces to a single packet centered about R~ at low 
temperature /'1o. To control computationaleffort, packets with small p~(T) will 
be discarded. Thus, the effective potential HA, r ultimately converges to H and an 
exact minimum is obtained. The previous discussion suggests that this will be the 
global minimum. 

Branching and merging of packets is naturally accommodated and will not 
interfere with the tracing procedure. However, for some objective functions, the 
global minimum may be located in a region where the Gibbs distribution is, 
on-average, small (e.g., Fig. 1F). The packet containing this minimum will not 
emerge from subdivision or shrinking of a larger packet and may not be detected. 
This difficulty is not particular to the packet approximation method; simulated 
annealing is also likely to fail (or to require inordinate time to detect the 
minimum) in such cases. Nonetheless, there are many problems, particularly 
those where the objective function is the partially-separable sum of a large 
number of partially-independent terms, where it is unlikely that such anomalous 
behavior will occur or where anomalous minima are not of primary interest. 

1.4. OVERVIEW 

In this paper we outline the "packet annealing" method of global minimization 
and show how it can be applied to a simple molecular conformation problem. 

In Section 2 we describe HA,T(R), the effective potential that governs ~T(R). A 
physical interpretation is presented in Section 3 and the packet annealing 
algorithm is outlined in Sections 4 and 5. The molecular conformation problem 
and the microcluster model is described in Section 6. We show how packet- 
annealing can be applied to this problem in Section 7 and present preliminary 
numerical results in Section 8. 

2. Packet Expansion of Pr(R) 

pT(R) is an effective distribution that does not approximate pT(R) in a uniformly 
convergent sense: I p r (R)  --pr(R)l  e¢ e. Instead, it provides a method for dissect- 
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ing the spatial variations of Pr(R) by size-scale. The expansion is constructed so 
that packets do not significantly overlap; that is, 

IR° - R~[ >A~ +At3. (2.1) 

[The procedures that ensure that (2.1) is satisfied for all a and/3 are discussed in 
Section 5.] Within each region IR - R°[ <~ Ao variations on spatial scales <A~ are 
absorbed into a single Gaussian packet approximation; variations on scales > A~ 
are represented by the positions and amplitudes of the packets. Only the regions 
where pr (R)  is significant are modeled since packets having small p~ are deleted. 
~T(R) is self-consistently defined by the requirement that, when sampled in region 
a by a function SA(R ) having length scale A I> A n , it yields results close to those 
obtained by sampling Pr(R) directly: 

f pr(R')S A(R - R')dR ~ f Pr (R')SA(R- R')dR' 
(2.2) 

J R -  R ' I<A~,A~>A~ , 

where the sampling function SA(R ) has the properties 

SA(R)--, 0 for I R I / A ~  

f SA(R) dR = 1 

We use 

SA(R ) = C(A) e -IR/AI2 (2.3) 

The integral of pT(R) over all conformation space gives the partition function 
Z(T). We define the spatially-localized integral in the left-hand-side of (2.2) as 
the "local partition function" ZA,T(R) and, following Wilson [33], define the 
"effective energy function" /~/A,r(R) by 

-- ZA,r(R) = f PT(R')SA(R - R') dR' e--t-IA,T(R)/kBT 

= C(A) f e -H(R')/k~T ¢ -I(R-R')/AI2 d R ' .  (2.4) 

[The fight-hand-side of (2.4) is obtained from (1.1) and (2.3).] Renormalization 
group transformations are usually defined in momentum space, but transforma- 
tions in configuration space are more appropriate here. (2.4) corresponds to 
multiplying the Fourier transform of pT(R) by exp(-4k2Aa), where k is the 
transform momentum variable. That is, it corresponds to a suppression of 
spatial-frequencies above cutoff ~ 0(2/A).  

ZA,T(R ) satisfies the boundary condition 

lim ZA r(R)/C(A) = Z ( T ) .  (2.5) 
A___> co , 
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ISIA,r(R) is a non-rescaled spatial-domain renormalization group transform of 
H(R) and satisfies the boundary condition 

. N 

[imoHA,r(R)=H(R). (2.6) 

A complete renormalization group transformation would also rescale R and/q. 
Rescalings are incorporated in the computational implementation but, for sim- 
plicity, are omitted in this discussion. 

(2.2), with (1.3), can be expanded in a Taylor's series in (R - R °) for each a. 
When restricted to contributions from a single packet a, the first three terms yield 
constraints on p~, R ° , and A~ in terms of HA,T(R): 

- o _ ( 2 . 7 )  ZA,T(R ~) ---- e-~A'r(I~OykBT ~ p. C(A) C(A~)/C[(A -2 + A2 -2)- 'n]  

OZA T(R)/OR [ 
- k s T  ~ = OI-IA,T(R)/OR IR=R 2 ~0 

Z A , T ( R )  R=RO 

02ZA T(R)/OR2 R=Ro} 
M I N I M U M { -  kB T Z~£A.7.(R) 

= MINIMUM{02/4A r(R)/ORz IR-R]} = 2kBT 
~ -- -Z2 

' - A + A , ~  

(2.8) 

(A >I A, ; single-packet approximation. The dependence of p~, R°~, and A~ on T 
is implicit. MINIMUM and MAXIMUM operators refer to the eigenvalues of the 
matrix). 

If non-isotropic Gaussian packets were used, A~ z would be the symmetric 
Gaussian coefficient matrix and (2.9) (without the MINIMUM operator) would 
represent a matrix of constraints. However, if we restrict to isotropic packets, 
only one condition can be fixed. We fix A, according to the minimum eigenvalue 
of the Hessian of/E/A,T(R ) SO that the size of the Gaussian packet matches pr(R) 
in the least-localized direction. This conservative choice assures that an aniso- 
tropic concentration of pr(R) in region a will be contained within isotropic 
Gaussian packet a. 

If pr(R) were well-approximated by a single packet, (2.7)-(2.9) would be 
satisfied for all A I> A~. However, in general, when A is large, S A will overlap 
multiple packets and (2.7)-(2.9) will not be valid. But, because of the non- 
overlap condition (2.1), (2.7)-(2.9) will be approximately valid even in the 
presence of multiple packets when A =A,, .  Restricting (2.7)-(2.9) by this 
condition generates a set of self-consistent conditions that fix p~, R ° and A~ : 

~ 

~ 0 2 - N / 2 C . A  , ZA~,r(R~)------- e HAo,T(n2)/k,r=p~ t . )  (2.10) 

(N = dimensionality of the domain) 

(2.9) 



288 DAVID SHALLOWAY 

0ZA~,r(R )/OR 
IR=R o = 0HA,,r(R ) /dR [n=RO = 0 - k B T  (2.11) 2Ao,T(R) 

MINIMUM ~ ( - k B T 022A" T(R) / OR 2 
ZA,,,T(R) 

kBT (2.12) = MINIMUM{O2kIA"r(R)/OR2 In=n°} = A~ " 

In practice, (2.11) and (2.12) will be solved by alternating iteration. Once an 
initial solution has been found, it can be iteratively propagated through small 
downward steps in T (see Section 4). Except for isolated discontinuities caused by 
branching and merging of packets (see Section 5), the changes in R°(T)  and 
A,,(T) at each step in T will be small and only one or a few iterations will be 
required, 

3. Physical Interpretation 

Consider the problem of finding the lowest point on the surface of the Earth. The 
simulated annealing procedure corresponds to shaking the earth (earthquake!) 
with progressively lower intensities (temperature) and tracking the position of a 
very small test-object (e.g., a marble) as it stochastically migrates to the lowest 
point. The process is inefficient because the test-object samples the energy 
function (height) over regions that are unnecessarily small compared to the sizes 
of its stochastic jumps. The more efficient RG procedure would be to start with a 
"soft" test-object or packet with diameter comparable to the sizes of the 
continents and oceans (e.g., a 10,000 kilometer beach-ball) and to iterafively 
minimize its positions as both temperature and packet size are progressively 
reduced. If the packet diameter is properly matched to the temperature, most 
thermal fluctuations will be absorbed internally and the (essentially deterministic) 
motion of its center-of-mass will be governed by steepest descent minimization of 
the effective energy function. In this analogy, the packet will first move to the 
Pacific Ocean; later, as temperature and diameter are reduced, to the Western 
Pacific, and finally to the Marianna's Trench. At points where equivalent downhill 
choices are available, it may be necessary to split the search and to track packets 
part way down multiple paths. (In the example of Figure 1, this occurs at the 
temperature transition between panels B and C.) This algorithm is not expected 
to find the actual lowest point on the surface of the Earth (a narrow test-hole in 
Siberia) because it only finds minima that are apparent at every size scale. The 
test-hole is apparent only at small size scales: it is an anomalous minimum which 
would not be present in the absence of the local-entropy-reducing activities of 
Homo sapiens. 

The packet annealing method embodies this approach. We imagine constructing 



MOLECULAR CONFORMATION ENERGY FUNCTIONS 289 

a packet by constraining, with massless linear springs of spring constant 
2kBT/A~, a large number Np of point masses (masses = m; positions = {Ri}, 
i = 1..Np) to a central point R. (Similar results would be obtained if the point 
masses were connected together by springs between each pair.) The energy 
function for this packet in the gravitational field is 

MgH,( { Ri}, R) = ~ mg H(R ~) + -:7- I R  ~ - R I  2 (3.1) 
i = 1 ha 

where g is the gravitational constant, M = Nprn is the total mass of the packet, 
and H is the height function. The width of the packet is determined by the spring 
constant and temperature; we have selected units so that this is A~. R, the point 
where the springs are connected together, will be located at the center-of-mass 
where the total force exerted by the springs vanishes: 

Np 
OHp 1 £ R i .  

In the limit Np---> 0% the R ~ fluctuate independently, so, by the Central Limit 
Theorem, the mean-square fluctuation of R will be much less [O(1/Ne) ] than the 
mean-square fluctuation of the individual R i. Thus, as in the Born-Oppenheimer 
method for nuclear motions [23], we integrate the Gibbs distribution for mgHp 
over the R ~ to get the effective free energy as a function of R: 

e--MgHA~'T(R)/kBTo¢ Np-->~lim e-mgHp({Ri}'R)/koT ~ R -  ~p = R i i=11I dR i 

Np--,~ 

=~ e -mg~A°'r(R)/k~r ~: f e -lm~H(R')/%r +ln'-RI2/A~l dR ' .  (3.2) 

If the factors of mg are absorbed into the definitions of H and ~/ to  convert them 
from height to energy functions, then the definition of H in (3.2) is identical to 
that in (2.4) except for an unimportant additive constant. 

HA,,r(R) governs the stochastic motion of the packet in the same way that 
H(R) governs the stochastic motion of a point mass. The central difference is that 
we can choose A~ so that the stochastic fluctuations of R will be relatively small. 
Then the packet will move according to 

dR -O/qA~.r(R) 
- -  ~ ( 3 . 3 )  dt OR 

(i.e., overdamped motion along a steepest-descent trajectory) until equilibrium is 
reached at a local minimum R ° 
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O~IA~,r(R) 
OR =0.  

This is identical to (2,11). 
The condition that the stochastic fluctuations are relatively small is 

where 

MAXIMUM ((R - R°. )2 ) Aa.T ~ h2a 

0 9 ( ( R -  R~)-)a~,r--= 

Approximating 

~ 0 I:Ih.,r(R ) ~ HA. ,T(R. )  + 

we have 

f (R ~o ,,2 --/tA r(R)/kB T i n  
- K ~ )  e °' o K  

- f i t  A T(R) /kBT 
f e ~" dR 

1 02~IA~,T(R) R=Ro(R_ Ro)z 
2 e3R 2 

kBT 

(3.4) 

(3.5) 

(3,6) 

( ( R -  o a ~ (3.7) 

OR 2 R=ROa 

(3.5) and (3.7) yield a relationship between A~ and the Hessian of [/A~,T at the 
stability position R] : 

MAXIMUM oefflA.,T(R) ~< a k ~ A , /  BT. (3.8) 

OR  2 

(3.8) provides a lower bound 2 on A,.  Since maximal information is provided 
when the packet is as small as possible without significant fluctuation in R, the 
equality in (3.8) fixes A , .  This is equivalent to (2.12). 

Because (3.6) is only approximate, the fluctuations in R about R ° will only be 
small for a characteristic time period At that is small compared to the period 
Atgloba 1 required for equilibration with nearby local minima. That is, (3.3) and 
(3.4) are valid for 

Atpoin t <~ A t  ~ Atgloba I (3.9) 

where Atpoin t is the characteristic period required for local equilibration of the 
small test masses that compose the packet. After longer times (At> Atglobal) , 
"tunneling" of the packet to other local minima will occur. Thus, the R°~ defined 
by (3.4) define metastable "states" of the system. 

4 .  P a c k e t  A n n e a l i n g  A l g o r i t h m  

4.1. E N E R G Y - L E V E L  T R A J E C T O R I E S  

The overall development of the annealing process can be followed by studying the 
trajectories described by the set of F ~ ( T ) ~ - k B T l o g [ p . ( T ) ] .  These are the 
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branching 

merging 

- - : ;  }unstable minima 

Tb T Thi 
Fig. 2. Hypothetical Packet-Annealing Energy Level Diagram. (A) The "free-energies" of 
packets, given by F~(T)= -kBT log [p~(T)], for a hypothetical objective function are 
plotted as a function of T. In this example the "ground state" (global minimum) at T =/ ' to 
(marked with an asterisk) is continuously connected to the ground state at all T. Vertical 
dotted lines show the discontinuous trajectory connections that occur when states become 
unstable. In practice, trajectories with F~(T)-F*(T) > - k , T  1og(Pmin) [where F*(T) is the 
lowest energy state at T and Pmin "~ 1] will not be calculated. (B) The primary types of 
energy level trajectory singularities involving bifurcations. (Branches and mergers between 
three or more packets are also possible but are omitted here for simplicity.) 

" f ree-energy levels" of the metastable "states" (self-consistent packet  solutions) 
at different T. Figure 2 displays a hypothetical energy level diagram where the 
trajectories of all states are displayed. The salient points are: (1) there tend to be 
fewer states at higher T because the smoother effective potential  surface supports 
fewer local minima, (2) states may merge or branch, and (3) states may become 
unstable and disappear both as T increases and decreases. In this example, a 
low-lying trajectory can be traced from the global minimum at Thi, through two 
branch points, to the global minimum at Tlo. Such "traceabili ty" (which is not 
guaranteed)  is required for success. It is not affected by mergers and branches 
(see Section 5) but may be disrupted by discontinuities associated with in- 
stabilities. States can become unstable with increasing T when a narrow local 
minimum in ]-IA=(T),T(R ) is averaged out as A~(T) increases. Figure 3, provides 
an example of such an instability. These points of instability as T increases are the 
points where new states spontaneously appear as T decreases. The new states may 
not  be detected,  so success requires that a continuous path to R*(T~o ) can be 
found without them. This requirement  is not unreasonable since the new states 
will have relatively high energies when they first appear (see Figure 3). 

States can also become unstable as T [and A~(T)] decreases. This destabiliza- 
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Fig. 3. Instability in 1.Dimension with Increasing A~(T). Panels A-D show/tx.r(R) as T 
and A increase. The sizes of the packets (finite-test objects) are indicated by dotted circles. 
The instability in state a at the temperature shown in (C) induces a discontinuity in the 
trajectory as packet a merges with packet/3. 

tion does not interfere with the trajectory tracing process since the trajectory can 
be (discontinuously) traced through the singularity (e.g., following the dotted 
lines in Figure 2). 

4.2. A L G O R I T H M  

An important  computational characteristic of the method is that the scales of 
significant variation of both spatial and objective-function values are regulated at 
all steps by A~ and T. These parameters (multiplied by small factors en, en, en) 
provide natural measures for the accuracies needed in (iterative) solutions of 
(2.11) and (2.12), so computational effort is controlled. The procedure terminates 
when a putative global minimum has been identified to accuracy ~<Ato. 

For  convenience we redefine p~ ,  R ° and A,  as functions of a discrete iteration 
Ix  

parameter  r(~- = 1, 2 , . . . )  rather than direct functions of T and use superscripts 
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for an independent  iteration index which cycles at each ~-. The central features of 
the algorithm are: 

(*INITIALIZE*) 
T = Th~ (* T m is sufficiently high to "melt"  all structure in prh~(R)*) 
(°)R = 0 (*an arbitrary point in the domain is selected*) 
(°)A--Ahi (*Ahi > the largest size scale of prh,(R); see Section 7*) 

(*solve Eqns. (2.11) and (2.12) for the initial solution by iteration*) 
i = 0  
repeat 

i = i + 1  

]1} 
(1)A z = M A X  OR 2 R=(i_I)R 

local minimization of (i)R starting from (i-DR until 

O ISI(oA,T( R ) el-i T 
OR A (0 

until ](OR - (;-I)R I ~< eR(i)5 AND I log(i) i / ( i - i ) i  I < eA(i)A 
R~(0) = 0)R 
Al(0 ) = (i)A 

(* ITERATE:  decrement T, adjust A, locally minimize R~ branch/merge *) 
repeat 

(4.1) 

(4.2) 

r = r + l  

T(r) = [1 - er(r ) lT(r  - 1) 

for  a E { a } r  do 
begin 

(* update A~(~') using (2.12) *) 

1 ; 0 9  = M A X  o 
OR 2 R=RO(v-1) 

local minimization starting from 0 R ~ (r - 1) until 

R=R0(~') EHT 
OR A(~) " 

Repeat  iterations of (4.1) and (4.2) if necessary (see below) 
Test and branch/merge packets if necessary (*see Section 5*) 
(* update p,,(7) using (2.10) *) 

(4.3) 

(4.4) 
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2 -N/2 -/~A~(,),r(,)[n0 (~)] 

P~ (~') = C[A~ (~')] e 

end 

(* discard low probability packets *) 

Ptot = ~ p~(r) (*calculate probability normalization factor*) 

f o r  = E {~}~ do 

i f  P , ( r ) < p r ~ , p , o ,  then { a } r  = { a } r  - a 
(* test for termination *) 
until ( a } r  = unique AND IR°~(,) - R°~(r - 1)1 <Ato.  

The maximum decrease in T at each step [determined by eT('/')] is limited by the 
0 _ R~(~-). This requirement that R~(~- 1) lies within the catchment region of 0 

ensures that R°(~ -) can be found by local minimization. The maximum number of 
packets in the expansion at any time will be ~<l/Pmin. 

Multiple iterations of (4.1) and (4.2) during initialization are required to get 
the initial one-packet approximation. In some cases, this packet will be unstable 
and will divide into subpackets when first tested for branching (see Section 5). 
During the main iterative loop, (4.3) and (4.4) update A~ and R ° towards 
solutions of (2.12) and (2.11). If the steps in T are sufficiently small, one update 
per cycle will be sufficiently accurate. This can be checked empirically and 
additional alternating iterations of (4.3) and (4.4) can be applied if necessary. 
Multiple iterations will be required when a state becomes unstable and the packet 
moves discontinuously. This can be detected by testing for ]R°~(r) 0 - R ~ 0 -  - 1 )1  > 

A,, 0" -- 1). In this case, the packet will move to a lower energy state where it may 
merge with a pre-existing packet. This process is naturally handled by the 
algorithm and poses no difficulty. 

5. Branching and Merging of Packets 

The possibility that packets a and fl may merge can be tested by checking for 

I R ° ( T )  - R ~ ( T ) I  ~ O[A~(T) + As(T)] .  (5.1) 

Packet merging is naturally accommodated by (2.11) and (2.12). When the 
0 packets come sufficiently close, their separate solutions [ R , , ( T ) , A , ~ ( T ) ]  and 

[R~(T), As(T)] will become unstable; only a single solution centered between 
0 0 R~)/2 with width A~ ~-(A~ + At3)] will exist. Conversely, them [at R,  = (R, + 

packet branching can be detected by testing for the appearance of new solutions 
of (2.11) and (2.12). 

The merged (y)  packet remains a solution of (2.11) and (2.12) throughout 
branches and mergers. However, when separate (a and/3) solutions exist, they 
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are included in expansion (1.3) and the parental I, solution is deleted. When this 
occurs, the size scale for approximation changes discontinuously. While (2.11) 
and (2.12) can continuously propagate solutions between branch/merger  points, 
special procedures are needed to handle these discontinuities. 

The packet merging procedure is straightforward: alternating iteration of (2.11) 
and (2.12) will propagate the separated solutions to the merged solution when the 
former become unstable. The branching procedure is more complex. In this case, 
we first test if a branched solution can exist at an appropriately reduced A = A b . 

o +_ AR~, is If so, iterative alternation of (2.11) and (2.12), using A b and R ° = R~ 
used to seek the branched packets. A prescription for specifying A b and AR ° is 
needed. 

These parameters can be explicitly calculated in the 1-dimensional case shown 
in Figure 4 where a probability distribution that is well-represented by a single 
packet at large T changes to a distribution that must be represented by two 
packets at lower T. For analytic simplicity, we model this function as 

p r ( x )  = [e -[(x-")/w(r)12 + e -[(x+~)/w(T)12]/[2x/--~w(T)] (5.2) 

( d w / d T > O ) .  

(For the potential shown in Figure 4, w ( T ) ~ 2 . 2 5 a  TV~-~0, where T O is the 
temperature in panel A. The exact form of w ( T )  is irrelevant.) The effective 
energy can be analytically calculated from (2.4) and (5.2): 

e--aA'~(x) =-- ZA,T(X) = 

The derivatives of/~/A,V are 

e-(X-a)Z/IA2+w2(r)] + e-(X+a)2/[A2+wZ(r)] 

2x/--~/A z + w2(T) 
(5.3) 

O X  2 - -  A- z -  - x - a + 2ax tanh ~ -  (5.5) 

where A '2 = A 2 + w 2 

Thus, replacing R ~ x for this one-dimensional case, (2.11) and (2.12) become 

f o 2ke  T o / 2ax~ "~ ] 
A,2 x o -  a t a n h t - F ) ]  =0 (5.6) 

4 k B T  [ A'2 o /2ax°~\]  k B r  (5.7) 
A~ 4 [ - - ~  - x°Z - a2 + 2x~ tanh~-~-z  ) ] - A ] 

where A'2--  = A ] + w 2 . 
(5.6) and (5.7) imply 
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A 

~ r 

I 

/ ,  

Fig. 4. Packet Branching. The bifurcated Gibbs distribution pr(x) of (5.2) (solid lines) and 
its packet approximations fir(x) determined by (5.8) and (5.9) (dashed lines) are displayed 
at different temperatures. For w(T) = a, the single packet (x~ = 0, A 0 = 2.06 a) is the only 
solution to (5.8) and (5.9) (panel A). When w(T) decreases to 0.63 a, the single packet 
approximation (x~ =0,  A0=2.01 a) (panel B) bifurcates into two subpackets (x°b =--- 
0.97 a, A b = 0.74) (panel C). These packets closely approximate pr(x) as T is further 
reduced [e.g., as in panel D where w(T)= 0.57 a]. 

o [ 2ax°  
x~ = t a n h ~ - ~ )  (5.8) 

A 2 = 2 a ' 2  + V4a,4 + w 4 
(5.9) 

a ,z = a z _ (x°)  2 " 

For  2a 2 ~ w(T)  2, pT.(x) has a single maximum at x = 0 and (5.8) and (5.9) have 
the unique solution 

0 
X o = 0  

(5.ao) 
A~ = 2a 2 + 4 ~ a  4 + w 4 (2a 2 ~< w2).  

For  2a z > w(T)  2, the maximum of pr(X)  at 0 bifurcates. However ,  ~ r ( x )  will 
not bifurcate until w ( T )  becomes small enough so that solutions of (5.8) and (5.9) 
with x° = ___ Ax b ~ 0; A~ = Ab exist. The  condition specifying w(Tb) ,  where T b is 
the highest temperature  where bifurcated solutions can exist, is obtained by 
substituting (5.9) into (5.8) to yield 
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~:=tanh{se/[v 2 + ( 1 -  s c2) + ~ ( 1 -  ~:2)2 + v4l} 

~:--= Ax° , (5.11) 
a 

w 2 

v =-- 2a 2 . 

Numerical  analysis shows that (5.11) has real non-zero solutions for ~ only when 

v 2 <~ 0.20.  (5.12) 

That  is, as T and w(T) decrease, bifurcation is first possible when 

w(Tb) = 0.63a.  (5.13) 

(5.11) implies that the bifurcated packets will be first located at 

--_ AX°b = -- 0.96a (5.14) 

with [using (5.9)] 

A b = 0 .77a .  (5.15) 

Using (5.10), (5.13) and (5.15), we find that 

A0(Tb) = 2.0a (5.16) 

implying that 

A b = 0.38Ao(Tb) --- yAo(Tb) (5.17) 

Ax ° = 0.4SAo(Tb) =- xA0(Te ) .  (5.18) 

This agrees with the intuitive idea that branching will occur when the width of 
each subpacket is about  half the width of the parental packet. Using (5.3) and 
(5.16) we get 

2 N X x ~ x ° = O  __ __ O H ~ , A o , T b (  ) -8.3ksT -pkBT 
0x 2 A~(Tb) Ao(Tb) . (5.19) 

In practice, a and w(T) will be unknown, but (5.16)-(5.18) depend only on the 
known values Ao(Tb) and x°(Tb) and provide the basis for a test-and-branch in 
which we check to see if branched solutions to (2.11) and (2.12) can exist with 
A = yA 0. In more  general form (replacing x--)  R and 0--) a )  the algorithm is: 

(* Given o , )  R,~(r) and A~(r) 

then begin 
initialize R ° ~- R°,(r) +- xA~(r)  

- p k z T  (5.20) 

(5.21) 
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A=TA~(r )  

iteratively find branched solutions of (2.10) and (2.11) 
end 

(5.22) 

Although the real PT(R) will not have the simple form of (5.2), its packet 
branching will be governed by similar self-consistency considerations. In the 
multidimensional case, the positions of the branched solutions will be offset from 
R°(r)  by a vector of magnitude --xA~(rb) in the direction of the eigenvector of 
the Hessian of /~/vA~b)m,b)(R) which satisfies (5.20). Approximately the same 
values of X, Y and p given by (5.17)-(5.19) can be used. High accuracy is not 
required since X and Y only provide initial values for iterative solution. Similarly, 
the precise value of p is not critical: if it is too large, branching will not be 
detected at the earliest possible point, if it is too small, some unnecessary 
attempts will be made to find iterative solutions that do not exist. 

More than one eigenvector of the Hessian will satisfy (5.19) if a packet 
branches into more than two subpackets. The branching procedure can be 
extended to accommodate this case. Other branch-testing algorithms can also be 
devised. For example, instead of examining a4~IA,T/OR 4 at A = TA 0 by (5.20), we 
can examine  04~IA,T/aR 4 at A = A 0. The computational efficiency of the alterna- 
tive methods must be compared. 

The packet occupation probability for each branched solution, Pb, is smaller 
than the probability for the merged solution, P0, since the total probability is split 
between the two branched solutions. Using (2.10), (5.3), and (5.14)-(5.16) we 
get 

Po = 1.08 (5.23) 

Pb = 0.56. (5.24) 

However, 2pb >Po, reflecting the fact that the branched solutions provide a 
better fit to PT(X) than the merged solution. (Formally, this is the reason that the 
merged solution is replaced.) These discontinuities in the p~ at branch points are 
schematically represented in Figure 2. 

6. The Molecular Conformation Problem 

The packet annealing method depends on the feasibility of evaluating the 
effective potential ~/A,r(R) from (2.4). For some objective functions, the integra- 
tions will require as much computation as a local grid-search and will be 
impractical. However, for some H(R) of simple structure, (2.4) can be analytical- 
ly approximated. Prediction of molecular conformation involves this type of 
H(R). 

The probability distribution for a system of n atoms in thermal equilibrium with 
a heat bath at temperature T is proportional to the Gibbs distribution, (1.1), 
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where R is the set of coordinates needed to specify the atom positions [R = (?i E 
R3; i = 1, n}] and H is the energy function. For many problems, H(R) has the 
form 

H ( R ) =  ~ hij( lFi- f j l )  
i=l, j>i 

+ ~ hi~k(lFi - QI, IFi - ?kl, lFi - ftl)  + " "  (6.1) 
i=l, j>i,k>j 

That is, H is the sum of interatomic 2-body, 3 -body , . . .  potentials and is partially 
separable. For many important problems, n -  O(102 - 104). The hij, hij k . . . .  are 
relatively simple functions that represent the interactions between different types 
of atoms and have lower, but not upper bounds (e.g., -h~j max < h q < ~); that is, 
there are limits on attractive but not on repulsive potentials. Since only a small 
number (<10) of different atom types are usually involved, there are only a 
relatively small number of independent h~j, h~jk.. .  The complexity of the 
minimization problem arises from the summation and the fact that the n(n - 1)/2 
]?~ - ~ji terms are not completely independent. H(R) is invariant under rigid-body 
translations and rotations so it only depends on 3 n ( n - 1 ) / 2 - 6  independent 
coordinates, and the global minimum (for 4 or more atoms) is a 6-dimensional 
hypersurface. This degeneracy can be removed; for pedagogical simplicity, we 
ignore it for this discussion. 

To focus attention on the novel aspects of the packet annealing method, we 
consider the problem of finding the lowest energy state of a "microcluster" of 
identical atoms that interact by a two-body potential: 

n 

H ( R ) =  ~ h(l~,-~l). (6.2) 
i= l , j> l  

Some examples of low energy states are shown in Figure 5. This problem, itself 

A 8 

Fig. 5. Global and Local Microcluster Energy Minima. Three conformations of 13 Lcnnard- 
Jones atoms corresponding to minima of (6.2) and (6.3) are shown. (A) Global minimum 
with icosahedral symmetry; (B) and (C) higher energy metastable local minima. 
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Fig. 6. /~a,r" This is calculated from the 6-12 Lennard-Jones  potential with E 0 = 1, o- = 1 
(6.3) using (7.8). Effective potentials for varying A,constant  T (left panels) and varying T, 
constant A (right panels are shown (ordinate = h, abscissa= r). The lower left panel 
(A = 0, r = 1) is identical to h(r). 
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important in chemistry [6, 24, 26], is a model for the more complex protein- 
folding problem. For inert atoms, h represents the Van der Waal's interaction and 
is often taken as a Lennard-Jones 6-12 potential: 

O" ~ 12 __ . (6.3) 
E 0 and tr set the objective (energy) and spatial scales, respectively. This potential 
is positive and unbounded as r/>0, corresponding to the "hard core" repulsive 
interaction between adjacent atoms, and has an attractive well of depth E 0 with 
minimum at r = tr, the atom pair equilibrium distance (see Figure 6; Z = 0, T-- 1). 

Most if not all local minima of (6.2) and (6.3) for small microclusters (n ~< 13) 
have been identified by exhaustive search of the potential energy surface [13]. It 
has been suggested that the number of local minima grows roughly like 
exp(-2.52 + 0.36n + 0.029n 2) [11], indicating that identification of the global 
minimum for even moderately large n is a problem of significant complexity. 
Putative global minima in the range n ~< 46 have been identified by studying 
polyhedral growth sequences [7, 14], by Monte Carlo and simulated annealing 
methods [9, 32] and by molecular dynamics [15]. These results provide standards 
for evaluating the performance of new algorithms. 

Hoare and McGinnes [12, 13] have compared the number of local minima for 
microclusters interacting with either a Lennard-Jones 6-12 potential or with a 
slightly smoother a = 3 Morse potential [h(r) = {1 - exp [ - a (1  - 0]} 2 - 1]. They 
find that even the minor relative smoothing of the Morse potential causes a large 
reduction in the numbers of local minima. For example, for n -- 13, the Lennard- 
Jones potential supports 988 local minima while the Morse potential supports only 
36 minima. This supports the intuitive idea that the complexity of the minimiza- 
tion problem will be reduced during the early stages of the annealing algorithm 
when highly averaged effective energy functions are being used. 

7. Packet Annealing of Microcluster Conformation 

7.1. APPROXIMATING THE EFFECTIVE POTENTIAL 

(2.4) and (6.2) yield 

ZA,T(R ) = e-~IA,r(R) 

=C(A)fexp{- E Br 
i=l , j>i  

1 ~ IF, - i~i[2} f i  d r ;  (7.1) 
A2 i=1 i=1 " 

In general, this complex integral can not be exactly evaluated, but it can be 
evaluated in two special cases: 
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If h is quadratic, 

g r 2 [quadratic case] (7.2) h ( 0  = 

then (7.1) can be analytically evaluated (see Appendix A) to give 

e-fftn.r(R) o~ f i  e -fiv~n'r(l~i-Fil)/kBT [quadratic case] (7.3) 
i=1,]>1 

where 

That is 

~ e-h*'Y(l~l)/kBT =-- (X/"~A) -3 f e-h(lT'l)/k"~ e-I~'-~?/x2 d?' . (7.4) 

/QA,r(R) = ~ /~-~A,T(lri -- ~l) + Cq(n, A, T) [quadratic h].  (7.5) 
i=l,]>i 

Alternatively, if h(r) is a bounded function, then at high temperature T, where 
lh(r)] IkBT ~ 1, we can approximate exp[-h(l~- ~ - F~])lksT ] ~ 1 - h(li~ - F~[)/ 
kBT and evaluate (7.1) to get 

/~A,r(R) ~ ~ [h(r)/kBT~l] (7.6) 
i=l,j>i 

where we have again used definition (7.4). 
Comparing (7.5) and (7.6) we see that in both cases 

/4A,r(R) ~ ~ /~,r(lfi -- ?j]) + constant (7.7) 
i=1,/>1 

where A =f(n, A, T); limA__, 0 f =  0. 
Thus, it seems reasonable to use an approximation of this sort in the general 

case. The fact that f(n, A, T) is unknown is unimportant since A will be 
determined self-consistently by homologs of (2.11) and (2.12). This factorization 
corresponds to averaging over atom positions in pairs and assuming that the 
effects of cross-correlations between pairs can be absorbed into A without 
changing the functional form of the effective interaction. It is analogous to using 
the two-body term in the Mayer cluster expansion of the partition function in 
statistical mechanics [8]. Even in cases where (7.5) is a poor approximation, it 
satisfies (2.6), the boundary condition as A----~ 0, up to an unimportant constant 
and provides a natural method for spatial averaging of H(R). 

The factorization approximation to t/A,r(R) is actually a special case of the 
more general "effective harmonic expansion" which is applicable when aniso- 
tropic packets are employed (i.e., when A is a symmetric matrix rather than a 
single number). This self-consistent method finds a quadratic approximation to 7-/ 
that correctly reproduces the root-mean-square inter atom pair distance fluctua- 
tions about the stability point. It uses the partially-separable structure of H(R) to 
reduce the multidimensional integrals in (7.1) to one-dimensional integrals which 
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can be evaluated by numerical integration. This reduction leads to a self- 
consistent set of equations that replace the packet annealing equations (2.10)- 
(2.12) and allows for distinct A~j. A full exposition of the methods for generating 
the effective harmonic expansion will be presented later. 

7.2. EVALUATION OF/~a,r(r) 

In spherical coordinates (7.4) becomes 

e-lel2/x2 
S~,r(Ifl)-- (~,_~A)3 fo  e-h(r')/~r-~'2/A2r'2 fl_l 

x d4~ d cos 0 d r ' .  

e2r'qr[ cos 0/X 2 

The ~b and cos 0 integrals can be evaluated to yield: 

2e-r2/x 2 
rxv  f] 

Ae-r2/,x 2 
- r v ~  fo x 

e -[h(r')/kBT+r'2/;~2] sinh(2rr'/A2)r ' dr' 

e - h t ~ ) l / k B r  sinh[ 2 r ~ )  ] d v 
A 

(7.8) 

The behavior of/~x,r(r) for the Lennard-Jones potential (6.3), calculated by 
numerical integration of (7.8) for varying h (left  panels) and varying T (right 
panels) is shown in Figure 6. As expected, hA,r(r ) becomes progressively 
smoother as A increases. The suppression of the repulsive singularity at r = 0 and 
the convexification of/~x,r(r) for large A (e.g., see h = 1.5, T = 1 panel) deserves 
special note. This phenomenon occurs because the spatial average in (7.4) is over 
the probability density, not over the singular objective function itself. The 
convexification at large h reflects the fact that, to low spatial resolution, the most 
probable conformation of two atoms occurs when they are together, hx,r(r ) also 
broadens as T is lowered while keeping h fixed. This is because lower energy 
atoms (with lower thermal velocities) do not penetrate and sample much of the 
repulsive core. Thus, their averaged interaction tends to be more attractive. 
Conversely, at higher temperatures, the bounded attractive part Of the potential 
becomes less significant than the unbounded repulsive part so the minimum of 
/~,r(r) is found at increasingly large distances. The panels in Figure 6 do not 
represent a typical packet annealing progression of/~(,),r(,)(r) since both h and T 
will change simultaneously during the process. 

7.3. CRITICAL X AND T FOR CONVEXIFICATION 

Convexification of fZX,T(r ) implies convexification of HA,T(R) and provides a 
natural condition for choosing Ahi for the initialization step (see Section 4). We 
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select /~hi > Ac(Zhi), where Ac(Thi ) is the value at which convexification first 
occurs. A C is determined implicitly by (see Appendix B) 

fo d [e -h(u"~)/~r - 11 ~uu [u3e-U~] du = 0 .  (7.9) 

A c decreases with decreasing T (Figure 6). Applying Laplace's approximation to 
(7.9) as T---~ 0, we find that 

lira A~/o-= ~ 2 ,  (7.10) 
T---~0 T D  

where (r is defined in (6.3). Convexification does not occur for T > Tc. T~ is 
determined (see Appendix B) by 

o [ e  -h(u)/gr~ - 1]u 2 du = 0. (7.11) 

Numerically solving (7.11) for the Lennard-Jones 6-12 potential, we get 

3"27E° (7.12) 
T c = kB 

The physical interpretation of T~ is not understood. It may be related to the 
physical critical point temperature, but the analysis contains no homolog to the 
physical critical point pressure. The physical critical temperature for argon is 
151°K [16]. Using the argon value E 0 ~ 120°K k~ [1], Tc ~ 390°K. 

8. Numerical Testing 

We have not yet tested an implementation of the entire packet annealing 
algorithm. However, preliminary tests to demonstrate the feasibility of computing 
and minimizing HA,r (R)  have been completed. Tables of kt~,r(r ) for discrete 
values of A, T and r were pre-calculated and values for arbitrary r were 
determined by cubic-spline interpolation. This allowed hA,r(R) and its first and 
second derivatives to be rapidly evaluated. ~IA,r(R ) was evaluated using the 
factorization approximation and local minimizations were performed using the 
conjugate gradient method. 

A partial implementation was tested with 5 4  n ~<24 by tracing a single 
trajectory as A was decreased in small steps from A> Ac(T ) to A = 0 at fixed 
T < T c. Execution required relatively little computation and was carried out on a 
microcomputer. The overhead for computing the h~, r tables was minimal; most 
time was used by the conjugate gradient minimizer. Computations took from a 
few minutes (N = 5) to about 20 hrs (N = 24) on an IBM PS/2 Model 80. This 
probably represents an overestimate of computational effort since A was de- 
cremented in conservatively small steps (50 steps/run) and no effort was made to 
optimize the conjugate gradient minimizer. 

The minima identified by this procedure are compared with the best minima 
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found by other means in Table I. The fact that even this crude method finds many 
of the putative global minima correctly is encouraging. One of the computed 
minima (n =23)  had lower energy than the lowest minimum identified by 
studying polyhedral growth sequences [14], although a lower value has recently 
been identified by both geometric [7] and simulated annealing [32] methods. 

The 3-dimensional conformations were graphically examined as )t was reduced. 
As expected, for A > A c, all atoms were condensed and located at the same point. 
As A was decreased, the overlap between atoms decreased as they were "pushed" 
apart by the increasingly hard core of the potential (re Figure 6, left panels). 
Spatial symmetry breaking (conformations going from higher to lower symmetry) 

Table  I. Lowest  min ima  found by partial implementa t ion  

Previous Partial 
N u m b e r  M i n i m u m  Implementa t ion  
of A t o m s  Energy  Energy 

5 9.104 = 
6 12.303 = 
7 16.505 = 
8 19.822 19.766 
9 24.113 = 

10 28.420 = 
11 32.765 = 
12 37.967 = 
13 44.327 = 
14 47.845 = 
15 52.322 = 
16 56.815 55.345 
17 61.318 61.095 
18 66.531 66.285 
19 72.659 = 
20 77.177 = 
21 81.685 = 
22 86.148 = 
23 92.844 91.348 
24 97.349 93.654 

The  magni tudes  of  the  energies  for the lowest energy states 
identified for microclusters of  5 to 24 a toms interacting with 
the  L e n n a r d - J o n e s  potential  [(6.3) with E 0 = 1] are listed. 
M i n i m u m  energies  were obtained from studies of  polyhedral  
growth sequences  [14] except  for N = 17 [9], N = 23 [7] and 
N = 24 [32]. The  partial implementa t ion  values were ob- 
ta ined by tracking a single packet  as A was reduced ]ignoring 
constra int  (2.11)] at fixed knT=O.O33E o. Runs  were 
ini t iated with A(0) > A c [re (7.9)] so that h~o), r was convex. 
The  energies  obta ined as A(z)--*0 are listed. The  partial 
implementa t ion  value at N = 23 is superior to that  obtained 
by the  polyhedral  build-up algori thm (90.647) indicating that  
nonpolyhedra l  configurations are explored as well. = denotes  
tha t  the  same  energy was obtained.  
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was observed at some values of A. In the complete algorithm, these events would 
be associated with trajectory branching. However, only a single, randomly 
selected, broken-symmetry trajectory was followed in this partial implementation. 
This may be the reason that the global minimum was not identified in some cases. 

9. Discussion 

The packet annealing method is a synthesis of both temperature-annealing and 
spatial-averaging methods which uses variable coarse-graining of both spatial and 
objective function values. Simulated annealing effectively provides coarse-grain- 
ing in objective-function but not in spatial values. Conversely, methods that 
provide spatial coarse-graining alone have also been proposed [34]. Levitt [22] has 
shown that smoothing the repulsive hard-core part of the Lennard-Jones poten- 
tial accelerates the rate at which the global minimum can be found in molecular 
dynamics simulations of protein condensation. This type of modification, which 
allows the atoms to pass through each other, emerges naturally in the packet 
annealing method (e.g., see Figure 6). Piela et al. [25] have recently proposed a 
differential "diffusion equation method" for linear smoothing of objective func- 
tions. Their method, if recast as an integral method, corresponds to averaging the 
objective function itself with a Gaussian test-function and is similar to the 
high-temperature approximation (7.6). Like the partial implementation described 
in Section 8, this method has had partial success when used for global minimiza- 
tion of microcluster conformations [20]. 

These approaches can be related to penalty function methods for constrained 
optimization [10] if we view the hard-core repulsive part of the potential as a 
constraint which keeps atoms from overlapping. Increasing the coefficient of the 
penalty function is analogous to decreasing A in the packet annealing method. Sha 
[29, 30] has shown that penalty function methods can give good results in global 
optimization of 2-dimensional component layouts. Components have large over- 
laps at the start of the procedure and gradually separate as the penalty function 
coefficient increases. This is analogous to the progressive separation of atoms in 
the partial implementation. 

Novel features of packet annealing are that spatial averages are performed over 
the Gibbs density rather than over the objective function and that T and A~ are 
coordinately varied. The use of the Gibbs density is heuristically motivated and 
provides a natural regularization of positive singularities that appear in many 
physical-model objective (energy) functions. It has the attractive feature that 
spatial averages are not unduly affected by large positive excursions of the 
objective function. As in statistical mechanics, there is little discrimination 
between regions where H(R)~> kBT; thus, computational effort is focused on 
discriminations in the important low energy regions. The heart of the approach is 
that it identifies and focuses computational effort on the spatial scales A~(T) that 
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dominate behavior at each temperature T. This permits simplifications that would 
not otherwise be apparent. 

The primary obstacle to implementation is the evaluation of the effective 
energy function (2.4). In one sense, (2.4) is simply a method for recasting the 
global minimization problem: if it could be evaluated exactly, the objective 
function could be convexified and global minimization would be trivial. (This can 
be recognized by applying Laplace's approximation to (2.4) at very low tempera- 
ture. In this limit, ZA,T(R ) is approximately Gaussian and ~/A.~(R) is convex.) 
The significance of (2.4) is that it (and the associated algorithms) provides a 
structure for novel approximation methods such as the effective harmonic expan- 
sion which take advantage of the partially-separable structure of molecular energy 
functions that can be decomposed as sums of 2- and 3-body interaction terms. 
This structure greatly restricts the shape of the objective function surface and, 
when properly utilized, can reduce greatly computational complexity. 

As pointed out, the packet annealing method will not converge to the global 
minimum in all cases. In particular, global minima which occur in regions where 
the Gibbs distribution is, on average, small will not be covered by packets and 
will be overlooked (e.g. see Fig. 1F). However, it seems likely that the global 
minima for many physically-motivated problems will be located in regions where 
the Gibbs distributions are, on average, large. This is particularly plausible for 
objective functions that represent extensive physical properties (e.g., energy) that 
are sums of large numbers of small, partially-independent terms. In the spirit of 
the Central Limit Theorem, we expect that isolated anomalies like that shown in 
Fig. 1F will become increasingly rare as the number of terms increases. It will be 
interesting to determine if there are any classes of problems for which the packet 
annealing algorithm can be guaranteed to find the global minimum. 

The solutions obtained by packet annealing may still be of physical interest 
even when they are not global minima. Like simulated annealing, packet anneal- 
ing models the behavior of a cooled physical system as it "seeks" low-energy 
states. Isolated anomalous global minima which are likely to be missed by both 
forms of computational annealing, are also likely to be kinetically inaccessible to a 
physically cooled system if the system condenses in a time period that is short 
compared to the period required for stochastic sampling of the entire energy 
surface. It has been suggested that this may be the case for some proteins and 
macromolecules that condense down kinetically preferred pathways to metastable 
states (local minima) [21]. Since it is the physically-selected minima (whether 
global or not) that are generally of primary interest, the potential neglect of 
anomalous global minima may not be a significant disadvantage. 

We have only begun the application of renormalization group ideas to the 
protein folding problem and much remains to be done. In particular, the 
convergence properties must be examined, the packet branching algorithm must 
be implemented and tested, and the behavior of more complex energy functions 
that accurately model protein interactions must be investigated. 
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Appendix A: Effective Potential for Quadratic Energy Function 

Using (7.2) and 

i = l , j > i  i = 1  

where 

- t  ~ - t  

r o -~  r i . 
i= l  

(7.3) can be rewritten as 

ZA,T(R ) = C(A) f~-o~ 

where 

e-6 leI d?, i 
i = l  

(A.I) 

(A.2) 

(A.3) 

( 1 ~ ~;)} d8 dF~ f l  dF; (A.5) 
+ i a "  ?~-  ni=x i=1 

Using 

1 f~_~ ei ~.~ = d a  

we have 

2A,r(R) 
c(h) 

= (2rr)3 L exp{ - ¢  

2A,r(R ) = C(h) e_ ~ g 1 f d~~ dr; - -  - -  . 

oo n i = l  .= 
(A.4) 

q~ ~ 2kBT i=1 i=1 

C(A) - (V-'~h)-3n. 

We release constraint (A,2) and treat ?~ as an independent variable by intro- 
- t ,  ducing a Dirac 8 function and integrating over r 0. 
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The integrand in (A.5) can now be factored into a product of terms of the form 
exp[-a(? '  i - b) 2] and the rl integrals can be analytically evaluated. The a and r0 
integrals then take a similar form and can be evaluated to yield 

3(n-1) 

ZA,~(R) = \2kB T (  gnA2 + 1) 2 

+ 2kBT) i=l,j>i 

By similar means, we calculate ~ , r ( r )  from (7.2) and (7.4): 

]}  n.7, 
(g~ + 2k~r) " 

Comparing (A.6) and (A.7) gives 

( gnA z + 1) 3(~-1,("-2)/4 ~ Z~'-~A,T(Iri - ~l) (A.8) 

Taking the logarithm of both sides yields (7.5). 

Appendix B: Convexification of h ~ , r ( r )  

Examination of Figure 6 shows that h~,r(r) will be convex when 

"02h~'r(r) r=0 ~>0 [convexity condition]. 
Or 2 

Since 

OZhx r(r) r a2s~,~(r) r0,  r(r) / ~  , ,121 a2 =-kBr~ ~ /Z~,~(r)- " [ ~r / zx'r[r)] f 

and [from (7.4)] 

0za'r(r)0r r=o = 0. 

(B.1) is equivalent to 

O2za'T(r) r=0 ~ 0 
Or 2 

[convexity condition]. 

Expanding (7.8) about r = 0 yields 

4 fo e-h(uX)/knTe-U2 

r z 2 uZ - 1 )+  0(F4)]U 2 d u .  x [ l + ~ ( ~  

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(a.5) 
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Substitution of (B.5) into (B.4) yields 

foe-h(~X)/~BTe-uZuZ(2U2--1)du<~O [convexity condition] (B.6) 

The u terms in the integrand of (B.6) can be rewritten as 

_,2 2/'2 ) d 
e u ~ , ~ u 2 - 1 _ ~  du " (u3e -.2) (B.7) 

and a constant can be subtracted from the exp[ -h]  term [so that it approaches 0 
as uA/o---~ 0% ~ defined in (6.3)] without affecting the value of the integral. This 
yields (7.9). 

From Figure 6 we see that h,,r(r) tends towards convexity as A increases. The 
highest temperature, To, for convexification is determined by evaluating (7.9) for 
A/~r---~. In this limit, the only contribution to the integral occurs for u ~ 1 and 
the e x p [ - u  2] term can be ignored. After rescaling uA--~ u, (7.9) reduces to 
(7.10). 

Notes 

Matrix notation is implicitly assumed throughout. That is 
N 

i ,  j , k  ~ i 

where N is the dimensionality of the space. In subsequent equations, R ~ denotes the outer product 
rir j. The squared vector magnitude is denoted [RZ]; tRZ[ = Tr(RZ). 
2 In addition, using (3.2) we can show that 

A2,,/2kBT <~ MINIMUM {[O2[tA~.r(R)/OR 2 JR=R0] -1} 

is always satisfied. 
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